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Abstract

Sommeijer, B.P., Parallel-iterated Runge-Kutta methods for stiff ordinary differential equations, Journal of
Computational and Applied Mathematics 45 (1993) 151-168.

For the numerical integration of a stiff ordinary differential equation, fully implicit Runge—Kutta methods
offer nice properties, like a high classical order and high stage order as well as an excellent stability behaviour.
However, such methods need the solution of a set of highly coupled equations for the stage values and this is a
considerable computational task. This paper discusses an iteration scheme to tackle this problem. By means of
a suitable choice of the iteration parameters, the implicit relations for the stage values, as they occur in each
iteration, can be uncoupled so that they can be solved in parallel. The resulting scheme can be cast into the
class of Diagonally Implicit Runge-Kutta (DIRK) methods and, similar to these methods, requires only one
LU factorization per step (per processor). The stability as well as the computational efficiency of the process
strongly depends on the particular choice of the iteration parameters and on the number of iterations
performed. We discuss several choices to obtain good stability and fast convergence. Based on these
approaches, we wrote two codes possessing local error control and stepsize variation. We have implemented
both codes on an ALLIANT FX/4 machine (four parallel vector processors and shared memory) and
measured their speedup factors for a number of test problems. Furthermore, the performance of these codes
is compared with the performance of the best stiff ODE codes for sequential computers, like SIMPLE,
LSODE and RADAUS.

Keywords: Parallelism; stiffness; diagonally implicit Runge—~Kutta methods; stability; convergence.

1. Introduction

Due to the never-ending demand for more speed in scientific computation, the available
computer power of new architectures has tremendously increased during the last decades. This
is mainly obtained by new hardware design and by a prodigious progress in micro-electronics.
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However, this hardware advancement is not sufficient to meet the requirements as they occur
in large-scale problems. The main problem in effectively exploiting this huge potential of
computer power is the fact that there is very little software available for these machines. In
order to be efficient, this software should be based on algorithms that are well tuned to the new
architectures.

Since many numerical algorithms were designed for the traditional sequential computers, the
existing methods are not necessarily the best. This is particularly true in the field of numerical
methods for ordinary differential equations. Therefore, it is highly desirable to (re)consider
these algorithms and, eventually, replace them with more suitable candidates.

Herewith, we arrive at the major aim of this paper: the construction of new algorithms,
specifically designed for a wide class of new architectures, thus making an attempt to decrease
the arrears of software with respect to hardware.

In this paper we will concentrate on numerical methods for the initial-value problem (IVP)
for the ordinary differential equation (ODE), written in the autonomous form

y'()=f(¥(1)), 0<t<T, yeR", f:RY->R". (1.1)

In particular, we shall discuss the construction of algorithms for (1.1) that are suitable in a
parallel environment. Although parallel computers are available now for quite a few years, it is
remarkable that this area received only marginal attention and in fact is still in its infancy. A
possible explanation may be that the integration of an IVP by a step-by-step process is
sequentially in nature and thus offers little scope to exploit parallelism.

Nevertheless, there are :.-me avenues: at first, there is the rather obvious way to distribute
the various components of the system of ODEs amongst the available processors. This is
especially effective in exnlicit methods, since they frequently need the evaluation of the
right-hand side function  >r a given vector y, so that the components of f can be evaluated
independently of one anou.zr. Following the terminology of [11], this is called parallelism
across the problem. A more interesting approach, called parallelism across the method, is to
employ the parallelism inherently available within the method. Concurrent evaluations of the
entire function f for various values of its -~ 'ument and the simultaneous solution of various
(nonlinear) systems of equations are examples of parallelism across the method. Remark that
this form of parallelism is also effective in case of a scalar ODE (i.e., N =1 in (1.1)), whereas
parallelism across the problem aims at large N-values. Also notice that both approaches can be
combined because they are more or less “orthogonal”. Still another approach, which could be
termed parallelism across the time, is followed in [2]. Contrary to the step-by-step idea, a
number of steps is performed simultaneously, yielding numerical approximations in many
points on the t-axis in parallel. In fact, these methods belong to the class of waveform
relaxation methods. These methods show a significant speedup provided that the number of
steps is (very) large. In the present paper we will confine ourselves to parallelism across the
method.

Unfortunately, many existing algorithms that perform well on a sequential computer can take
hardly profit from a parallel configuration. This feature necessitates us to construct new
methods, specifically designed for parallel execution. In doing so, it was in many cases
unavoidable to introduce some redundancy in the total volume of computational arithmetic. As
a consequence, it is overambitious to expect a speedup (compared with a good sequential
solver) in the solution time with a factor s, if s processors are available.
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In many of the methods considered in this paper, a small number (typically in the range
from 2 to 6) of concurrent subtasks of considerable computational complexity can be distin-
guished. Consequently, (i) these methods are aiming at so-called “coarse-grain” parallelism,
and (i1) communication and synchronization overhead will be small compared with CPU-time.

2. Runge-Kutta methods

The general Runge—Kutta (RK) method to proceed the numerical solution of (1.1) from ¢,
over a step h is given by '

yn+1 =yn +h Z b:f(K)’ (213)

i=1

s
Y=y, +h ) a;f(Y), i=1,...,s. (2.1b)
j=1

Here, y, =y(t,), a;;, b; are the coefficients defining the RK method and s is called the number
of stages. The quantities Y, the stage-values, can be considered as intermediate approximations
to the solution y. An RK method is said to be explicit iff a;; =0, j > i. Otherwise, it is called an
implicit RK (IRK) method. For the algorithms described in this paper, our starting point will
always be an IRK method.

A nice feature of IRK methods is that a high order of accuracy can be combined with
excellent stability properties [6]. Well-known examples of such IRKs are the Gauss—Legendre
methods (order 2s and A-stable) and the Radau IIA methods (order 2s — 1 and L-stable). A
serious disadvantage, however, is the high cost of solving the algebraic equations defining the
stage-values Y,. Since the Y, are coupled in general, this is a system of dimension sN, thus
involving O((sN)?) arithmetic operations. This compares unfavourably with ODE solvers based
on linear multistep (LM) methods, where a system of dimension N has to be solved in each
step. This is the main reason that IRK methods did not receive great popularity to serve as the
basis for efficient, production-oriented software. In the literature, several remedies have been
proposed to reduce the amount of linear algebra per step, like Diagonally Implicit RK (DIRK)
methods [1,7,8,20] and Singly Implicit RK (SIRK) methods [3,5]. However, both approaches
have their own disadvantages and did not succeed in completely superseding the LM-type of
methods. Another possibility to realize the excellent prospects that IRK methods offer is the
use of parallel processors. In [26-28], we analyzed several parallel methods. In the next sections
we will summarize the main characteristics.

Motivated by our starting point that parallelism across the method should also be effective
for scalar ODEs, we will assume throughout that (1.1) is a scalar equation. This has the
notational advantage that we can avoid tensor products in our formulation. However, the
extension to systems of ODEs, and therefore to nonautonomous equations, is straightforward.

In describing the parallel methods, it will be convenient to use a compact notation for the
RK method (2.1). Introducing 4 =(a;;), b=(b;), Y=(Y;) and e =(1,...,1)7, all of dimension
s, a succinct notation of the RK method reads

yn+l=yn+hbe(Y)a (223)



154 B.P. Sommeijer / Parallel Runge—Kutta methods for ODEs

Y=y,e +hAf(Y), (2.2b)
where f(v) = (f(v,)), for a given vector v = (v;).

3. Diagonal iteration

The main problem in the application of an IRK is the solution of (2.2b) for the stage vector
Y; once this vector has been obtained, (2.2a) is straightforward. A direct treatment to solve
(2.2b) (i.e., applying some form of modified Newton iteration) offers little scope to exploit
parallelism, except for the linear algebra part; this aspect is not discussed here, since it is
“orthogonal” to the subject of this paper, i.e., the parallel calculation of the stage vector Y. To
that purpose, we introduce the iteration process

YO —hDf (YD) =y, e +h[A-D]f(YU™D), j=1,...,m. (3.1a)

Here, D is a diagonal matrix. This is crucial, since now, given an iterate ¥~ ", each individual
component Y;? of the unknown iterate Y’ has to be solved from an implicit relation of the
form

Y —hd, f(YP)~3,=0, i=1,...,s, (3.1b)

where ¥, is the ith component of the right-hand side vector in (3.1a) and d, is the ith diagonal
entry of the matrix D. Clearly, all 3; depend on YY", but can be computed straightforwardly
(even in parallel). The bulk of the computational effort involves the solution of the s equations
for the components Y;, i = 1,...,s. However, given the X, the equations (3.1b) are uncoupled
and can be solved in parallel. Hence, assuming that we have s processors available, each
iteration in (3.1a) requires effectively the solution of only one implicit relation of the form
(3.1b). This is especially advantageous in case of (large) systems of ODEs, because then each
iteration in (3.1a) requires effectively the solution of a system of dimension N, the ODE
dimension. As a consequence, the total iteration process has the effect that the solution of one
system of dimension sN has been transformed into the solution of a sequence of m systems, all
of dimension N. Moreover, since D is the same in all iterations, the (parallel) LU decomposi-
tions of the matrices I —hd; 8f/dy can be restricted to the first iteration. Summing up, the
total computational complexity of the iteration process is O(N> + MmN ?2), whereas a direct
treatment requires O(s3N3 + Ms?N?), with M the number of (modified) Newton iterations
required. Since typical s-values range from 2 to 6 and because the required number of
iterations m is quite modest (as we shall see in Sections 3.1 and 3.2), we now arrive at a
manageable level of arithmetic. Notice that this approach is quite similar to that of a DIRK
method, where also only one LU decomposition of a matrix of dimension N is required per
step. In [1,8,20], A-stable DIRKSs are analyzed of order p with p — 1 implicit stages, 2 <p < 4.
Cooper and Sayfy [7] constructed A-stable DIRKs with five implicit stages. They present a
method of order 5 and could increase the order to 6 by adding one explicit stage. We are not
aware of A-stable DIRKSs of higher order. However, the parallel approach allows for A-stable
methods of as high an order as 10 (excluding 9) (cf. Section 3.1) or even arbitrary high order (cf.
Section 3.2).

A further advantage of the parallel methods is that the stage order [9] can be made higher
than that of a classical DIRK method. We postpone the discussion of this aspect until Section
3.2 and first finish the discussion of the iteration scheme (3.1a).
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To start the iteration (3.1a), we need the initial approximation Y‘©. One of the possibilities
to choose this vector is given by

YO —hBf(Y®) =y, e+ hCf(y,e). (3.1¢)

Here, the matrix B will be chosen either zero or of diagonal form in order to exploit
parallelism (in the same way as described for (3.1a)); C is an arbitrary full matrix. Particular
choices of these matrices will be discussed in the Sections 3.1 and 3.2. In the sequel, the initial
approximation Y@ will be referred to as the predictor.

If m iterations have been performed with (3.1a), then the new approximation at z,_, is
defined by (cf. (2.2a))

Yna1 =Y +hBTF(Y). (3.2a)

Once an underlying IRK has been selected (henceforth called the corrector), the freedom left
in the iteration process (3.1) consists of the matrices B, C and D, and the number of iterations
m. With respect to the matrix D we have considered several possibilities: first of all, there is
the simplest choice, which sets D equal to the zero matrix. In this case we obtain an explicit
iteration process and, consequently, the resulting scheme is only suitable for nonstiff equations.
This approach has received relatively much attention in the literature (see, e.g.,
(4,16,17,19,21,25]). Choosing the “trivial” predictor Y@ =y e, the order behaviour of the
resulting algorithm can be formulated as in the following theorem (see also [16-18]).

Theorem 3.1. The method {(3.1a) with D=0, (3.1c) with B=C =0, (3.2a)} is of order
min{ p*, m + 1}, where p* is the order of the corrector (2.2).

Notice that this method is itself an explicit RK method with s(m + 1) stages. However, since
Y =y e+ hAf(y,)e, we see that the first s stages all require the same f-evaluation and hence
can be collapsed into one stage. As a result, the method defined in Theorem 3.1 can be
considered as an explicit RK method with sm + 1 stages. On a parallel machine, however, the
effective number of stages equals only m + 1 (provided that s processors are available). This
means that if the number of iterations m <p* — 1, then we have obtained an explicit RK
method where the number of effective stages equals the order. This is an optimal result [16]
and compares favourably with the situation for classical (uniprocessor) explicit RK methods,
where the number of stages increases faster than linearly if we want a high order. Furthermore,
we observe that the number s of required processors is minimal with respect to the order, if the
generating RK method is of Gauss-Legendre type, since these methods have the highest
possible order with respect to the number of stages. We do not continue the discussion of the
case D = O, since this paper aims at stiff problems, leading us to implicit methods, i.e., to the
case D # O.

Before specifying particular choices of D, we first want to discuss an aspect of the corrector
which is relevant with respect to stiffness. In integrating stiff ODEs, a favourable property of
the method is that it is “stiffly accurate”. This notion has been introduced in [23] and means
that the RK method satisfies 5™ = e’A, with e, the sth unit vector. Hence, ™ equals the last
row of A, or equivalently, the last component of the stage vector Y is an approximation to the
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solution at the new step point ¢, ,. Therefore, in case of a stiffly accurate corrector, (3.2a) will
be replaced by

Ynr1=e Y. (3.2b)

Another aspect worth mentioning is, that — for nonstiffly accurate correctors — the final

evaluation f(¥“™) in (3.2a) has a bad influence on the stability of the iterated scheme [24]. This

can be avoided by the following modification (see [13]): suppose that the corrector would have
been solved, i.e., Y satisfies (2.2b). Then (assuming that A is nonsingular), we have

B(Y) = A7 ¥ —y,e]. (33)

Replacing Y in this relation by Y™ (that is, assuming that (3.3) is reasonably satisfied by Y™)
and substitution into (3.2a) leads to

yn+l:=yn+b1:4—l[Y(m)—yne]. (3.2c)

In case of a nonstiffly accurate corrector, the use of (3.2¢) instead of (3.2a) has two conse-
quences for the resulting method: the stability is improved by using (3.2¢), since we avoid the
final evaluation f(Y“™); on the other hand, (3.2a) is more accurate (see also the Remark
following Theorem 3.2). For a stiffly accurate corrector, however, (3.2a) and (3.2¢) are
equivalent.

Now, we return to the discussion of the matrix D; we distinguish two cases.

(1) D is such that after a prescribed number of iterations the resulting method has good
stability properties. This option was followed in [28] and will be outlined in Section 3.1. In this
approach the order of the resulting method equals the order of the corrector and the number
of iterations m is minimal to reach this order.

(ii) Another option is to solve the corrector and to choose D in such a way that we obtain
fast convergence in the iteration process (3.1a). This strategy has been followed in [26,27] and
will be the subject of Section 3.2.

In the following sections these cases will be briefly discussed; henceforth, the above Parallel
Diagonally-Iterated RK methods will be denoted by PDIRK methods.

3.1. Diagonal iteration with a prescribed number of iterations

Here, we consider methods for which the number of iterations m will be fixed. As we shall
see, this number is dictated by the orders of the corrector and of the predictor. To clarify this
strategy, we quote a theorem from [28].

Theorem 3.2. Let p* be the order of the underlying corrector (2.2). Then the order p of the
resulting PDIRK method {(3.1), (3.2a), (3.2b)} is given by

min{p*, m +r}, for all matrices B, C and D,
min{p*, m+1+r}, if (C+B)e=Ae,
min{p*, m+2+r}, if, in addition, BAe =A’e,

where r takes the value 1 if y, | is defined by (3.2a) (i.e., the nonstiffly accurate case) and r =0 if
Yn+1 is defined by (3.2b) (the stiffly accurate case).

Furthermore, if the corrector is stiffly accurate, then the corresponding PDIRK method has the
same property.
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Remark. For the nonstiffly accurate case, we observe that if we change to the modification
(3.2¢), then r should be set to 0 in Theorem 3.2. Since in [26,28], the nonstiffly accurate

methods were analyzed on the basis of (3.2a), we will confine ourselves in this overview to this
choice.

Based on this theorem, we adopted in [28] the strategy to choose m such that p =p*. This
means that we stop iterating as soon as the order has reached the order of the corrector, since
a continuation of the iteration process would not increase the order of the PDIRK method.
Furthermore, in [28], we only considered correctors of Gauss—Legendre type and of Radau ITA
type.

With respect to the choice of the predictor, it turned out that employing the C-matrix did not
yield particular advantage; so, here we only present results for C = O. For the matrix B we
choose either B=0 or B =D. Although B and D may be different diagonal matrices, the
choice B =D has the computational advantage that the LU decompositions of I —dh df /3y,
which are needed during the iteration (3.1a), can also be used in solving (3.1¢) for Y.

The diagonal matrix D is chosen such that the resulting PDIRK method has optimal stability
characteristics. Here, we distinguish two approaches: matrices D with constant and with

varying diagonal entries. These variants will be discussed in the following subsections, respec-
tively.

3.1.1. D-matrices of the form dI

In this relatively simple case we could perform a rather thorough stability analysis, using the
so-called “E-polynomials” (see, e.g., [6]). In this connection we also mention the work of
Wolfbrandt [29], who investigated similar stability functions. A few classes of unconditionally
stable methods are listed in Table 3.1. The values of d can be found in [28].

We recall that the Gauss and Radau ITA methods are good choices to serve as a corrector,
since these TRKs have a high order with respect to the number of processors required (i.e.,
these methods need a minimal number of stages). It is however interesting to remark that any
RK method can be used as a corrector, even an explicit one, although in that case we have the
unconventional situation that an explicit corrector is iterated by means of an implicit iteration
process. For example, the PDIRK scheme resulting from iterating a pth-order explicit RK
method (p < 6 or p=28) using exactly p iterations and B =D =dI can be made L-stable by
choosing the appropriate d-value. However, the number of processors equals the number of
stages of the explicit RK method and thus is at least p.

Table 3.1

Unconditionally stable PDIRK methods with D = dI

Corrector Matrices B and D Attainable order p Number of Stability

effective stages

Gauss B=0, D=dl p<s4,p=6 p—1 A-stable
Gauss B=D=dIl p<6,p=8 P L-stable
Radau I1A B=0, D=dl p<6,p=8 r L-stable
Radau [IA B=D=dl p<8 p=10 p+1 L-stable
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3.1.2. Nonconstant D-matrices

If we omit the restriction of constant elements in D, then we can save one iteration and still
obtain the same order as in the previous subsection, simply by setting B =D = diag( Ae) (cf.
Theorem 3.2). The stability function for this case is rather complicated, so that the stability
region of the methods had to be determined numerically. Some of these methods turned out to
be only A(a)-stable, however with « close to 90°. In Table 3.2, we collect a few methods with
good stability properties.

3.1.3. Numerical example on the ALLIANT FX /4

Here, we will show the performance of an L-stable PDIRK scheme with B =D =dI (cf.
Table 3.1) when running on a parallel computer. Based on the four-stage Radau IIA method,
we perform seven iterations to arrive at order 7. Hence, including the calculation of the
predictor, this PDIRK scheme requires, effectively, eight stages per step. This method is
L-stable for a range of d-values, from which we selected d =0.169 024 637 9. This special
d-value has the effect that the degree of the denominator in the (rational) stability function is
two larger than the degree of the numerator, which causes extra damping at infinity.

We equipped this method with a provisional strategy for error control and stepsize selection.
Since the PDIRK approach inherently provides a whole set of embedded reference solutions of
lower order, a simple way to obtain an estimate for the local truncation error is given by
| eIy — Ty || for some j<m. Notice that this estimate does not require additional
computations, since Y is anyhow needed to proceed the iteration process. In our code we set
j=m — 1 (recall that s =4 and m = 7). For further details concerning the strategy, we refer to
[28].

We implemented this scheme on the ALLIANT FX /4 computer (four parallel processors
and shared memory) and applied it to several test problems. The goal of these tests is twofold:
(i) we want to investigate to what extent the theoretical parallelization can be realized in
practice; in other words, how close we can approach the ideal speedup factor on this
four-processor machine; and (ii) we want to compare the performance of the code PDIRK with
that of a good sequential solver. To that purpose we selected the reliable code SIMPLE of [22]
which is based on an A-stable DIRK method. Its (fixed) order is 3, which is rather low.
Moreover, it has stage order 1. Since many problems are more efficiently integrated if
high-order formulas are available, we also included in our tests the code LSODE of [14]. This
BDF-based code has formulas up to order 5 available, from which only those of first and
second order are A-stable. Hence, LSODE is less robust as a general stiff solver, but, on the
other hand, is generally accepted as a good sequential solver and enjoys considerable usage
over a long period.

Table 3.2
PDIRK methods with a nonconstant D-matrix
Corrector Attainable order p Number of Stability

effective stages
Gauss /Radau IIA p<S5S p-1 Strongly A-stable
Gauss /Radau IIA p=6,7 p-1 A(a)-stable, a > 83°
Radau I1A p=3,5717 D L(a)-stable, a > 89°
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Table 3.3

Performance of the codes SIMPLE, LSODE and PDIRK for problem (3.4)

Method (Effective) number of TOL A T, T,

implicit relations /step

SIMPLE 3 1074 6.5 0.63 0.85
10°° 7.8 1.38 >T,
1076 9.5 3.67 >T,

LSODE 1 1073 74 035 >T,
1077 8.6 0.80 >T,
10-° 10.3 1.71 >T,

PDIRK 8 102 8.5 0.51 0.19
10° 111 1.08 0.37

One of the test problems described in [28] is the set of reaction rate equations:

dy, .

dy, 4 7 2 8
dy

ETRERUL R 1(0) =0.

This problem is also used in [14,22] to illustrate the codes SIMPLE and LSODE. Initially, the
solution changes rapidly and small stepsizes are necessary; gradually, the problem reaches a
steady state and an efficient integration requires the stepsize to be increased significantly. In a
typical situation, we observed stepsizes in the range [10 3, 10%]. For several values of TOL (the
local error bound), the results of the various codes are given in Table 3.3. Here, T, and T,
denote the CPU-time (in seconds) when the program is run on one and four processors,
respectively. The accuracy is measured by means of A, which is defined by writing the
maximum norm of the global (absolute) error in the endpoint in the form 1074

From this experiment we can conclude the following.

(i) Concerning the parallelization of the PDIRK code we observe a speedup (defined by
T,/T,) with a factor = 2.8. The main reason for not obtaining the ideal factor 4 is that the
various processors needed a different number of Newton iterations to solve their “own”
implicit relations. We counted the total number of Newton iterations (over the whole integra-
tion interval) for each individual processor and observed that the two extreme values differ by
about 20%.

(ii) The scalar codes SIMPLE and LSODE run faster on one processor than on four.
Apparently, the parallelization overhead degrades the performance. Moreover, the dimension
of the ODE (3.4) is too small to take any advantage from the vectorization capabilities of the
ALLIANT.

(iii) When compared with PDIRK, we see that SIMPLE needs much more time in the
high-accuracy range. This is obviously due to its low order. LSODE is more efficient in this
range but, when compared to PDIRK, its CPU-time is approximately four times as large to
obtain 8.5 digits (absolute) precision.
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(iv) Finally, we observe that the value for TOL used by PDIRK is several orders of
magnitude larger than the value used by either SIMPLE or LSODE to achieve the same global
error. This can be explained as follows. Due to its high order, the local truncation error of
PDIRK is usually relatively small. Therefore, if crude tolerances are used, the error control
mechanism signals that a large stepsize can be used in order to balance the estimated and the
requested local error. On the other hand, the Newton process imposes a limitation on the
stepsize. In our implementation, the Newton processes to solve for (the components of) Y@ are
given the value y, as initial iterate. Unfortunately, for large values of h (as suggested by the
error estimator) this initial iterate is not always inside the contraction domain for the Newton
process, resulting in an adequate reduction of the stepsize. As a consequence, this high-order
scheme, using a small(er) stepsize, will produce a local error which is much smaller than
requested. In conclusion, for this test problem, the restriction on the stepsize imposed by the
Newton process is more stringent than that imposed by the local error control, unless very small
values for TOL are used. We have also integrated some linear ODEs (for which the
convergence problems are not relevant, of course) and observed a relation between TOL and
the global error similar to that of SIMPLE and LSODE.

3.2. Diagonal iteration until convergence

PDIRK methods with a fixed number of iterations, as considered in the previous subsection,
are in fact special DIRK methods. It is well known [9] that DIRK methods possess a low
so-called stage order (viz., 1) which, in general, drastically reduces the accuracy. As a matter of
fact, in many stiff problems the actually observed order equals the stage order (or, sometimes
the stage order +1). As a consequence of this so-called order-reduction phenomenon, the
relevance of methods with a high algebraic (i.e., classical) order and a low stage order is
questionable. Therefore, apart from the “fixed-m-strategy’” we also considered the approach
where the corrector is iterated until convergence. This implies that we can rely on all the
characteristics of the corrector, like stability and accuracy behaviour and, in particular, the
stage order. For example, s-stage IRK methods of Gauss and Radau type both have stage order
s. In addition, they have a very high algebraic order (superconvergence) but, as observed above,
this property seems to be of minor importance in many stiff problems. Therefore, we also
considered (A-stable) Newton—Cotes and Lagrange type IRKs (cf. [26]); in these (collocation)
methods the superconvergence is exchanged for an increase by one of the stage order. This is
obtained by adding one explicit stage to the s implicit stages. The time needed for this extra
explicit stage is quite negligible compared with the time involved in solving the implicit stages.
Thus, we arrive at correctors with algebraic order = stage order = s + 1, which are suitable for
parallel iteration on an s-processor machine.

Having decided to solve the corrector, we can now consider (3.1a) as an iteration process,
where “iteration” has the classical meaning. This leads us automatically to a criterion for
choosing the matrix D: this matrix should be such that we have fast convergence in (3.1a).

In [26] it was shown that the iteration error Y — Y, in first approximation, satisfies the
recursion

Y-YD=2Z(z)[Yy-YYUV], j=1,...,m, z=ha, (3.5a)
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where the iteration matrix Z is defined by
Z(z)=2zD[I-zD] '[D~4 -1]. (3.5b)

Here, A denotes an approximation to the derivative df/dy and should be understood to run
through the spectrum of the Jacobian matrix in case of systems of ODEs. The convergence
behaviour of (3.1a) is determined by the iteration matrix Z and we have the matrix D at our
disposal to obtain fast convergence.

The main difficulty in choosing D is that Z depends on z, i.e., on the problem. Therefore,
we cannot expect to find a uniformly “best” D-matrix. Since we are aiming at the integration of
stiff equations, we considered the influence of Z on the eigenvectors of 3f /3y corresponding to
eigenvalues of large modulus. For | z| — », Z behaves as I — D~ 'A. Thus a strong damping of
these eigenvectors leads us to the minimization of the spectral radius of 1 —D 4. Observe
that the “nonstiff” eigenvectors (corresponding to small values of |z|) are already damped
since Z behaves as z[ 4 — D] for | z| — 0. With this approach we obtained fast convergence on
a broad collection of test examples (cf. [26]). However, we do not claim that this choice of D is
the best possible. For example, a more sophisticated strategy might be the minimization of
(some norm of) Z(z) over the whole, or the “stiff part” of the left half-plane.

Another possibility could be to minimize the principal stiff error constants in the resulting
PDIRK method; this option has been studied in [27]. Several other options to choose D were
discussed in [26]. Many of these have been used in numerical tests, but it turned out that the
behaviour of the strategy based on the minimization of the spectral radius p of I — D~'4 could
not be improved.

Based on this approach, methods have been constructed for s =2, 3, 4 (cf. [26]). Only for
s = 2 it is possible to determine D analytically such that p(I — D~4) = 0. For the larger values
of s, the D-matrices had to be calculated numerically. The p-values found increase with s and
are (for the several correctors) in the range (0.004, 0.01) if s = 3 and in the range (0.02, 0.1) for
s=4.

In [26], we also made a mutual comparison of several stiffly accurate correctors. It turned out
that, in general, the Radau IIA and the Lagrange based methods are superior to the Lobatto
IIIA and Newton—Cotes based methods. This is probably due to the fact that the first methods
have damping at infinity, whereas the latter type of methods are only weakly stable at infinity.
Furthermore, we also considered the nonstiffly accurate method based on the Gauss corrector.
This method showed poor stability behaviour, but as mentioned before, this can be improved
upon if we use (3.2¢) instead of (3.2a). Evidently, the final iteration error Y — Y depends on
the initial error Y —Y@ (see (3.52)). In [26], only the “trivial” predictor Y@ =y e (ie.,
B =C =0 in (3.1¢)) has been used. In [27], also the implicit variant is considered (B =D, C =
0), as well as predictors that use information from the previous step. This is a natural way to
increase the accuracy of the predictor, since all methods are based on the collocation principle.
This implies that the stage vector YV calculated in the preceding step defines a collocation
polynomial which can be extrapolated to the present step. Needless to say that, in general, the
increased accuracy of Y results in fewer iterations.

Apart from the convergence behaviour we also studied the stability of the iterated methods
for several, but fixed values of m. It can be shown that the stability functions of the methods
based on the Lobatto IIIA and Newton—Cotes correctors (using Y© = y,e) are only A-accepta-
ble in the limit, i.e., for m — = (cf. [26, Table 4.1]). For the Radau IIA and Lagrange based
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methods the stability function of the PDIRK method is already A-acceptable for modest values
of m. These m-values for various choices of Y can be found in [27, Table 2]. However, for
many problems the requirement of A-stability is unnecessarily strong and can be weakened to
A(a)-stability with o« sufficiently large. It turns out that the angles « corresponding to the
Radau ITA and Lagrange correctors are close to 90° after only a few iterations, especially if ¥©
is defined implicitly (B # O); these a-values can be found in [27, Table 3].

3.2.1. Numerical example on the ALLIANT FX /4

Similar to the “fixed-m-strategy” discussed in Section 3.1, we have implemented a PDIRK
method based on the “minimal-spectral-radius-strategy””. For the corrector, we selected the
four-stage Radau IIA method of order 7; the predictor Y@ is obtained from extrapolation of
the collocation polynomial calculated in the preceding step. This pair is recommended in [27] as
the most efficient combination.

For the error control, we calculate a reference solution of the form

4
Yeet =QY, +ﬂOhf(yn) + Z ﬁzY;(m)’ (36)
i=1

where the Y™ are the final iterates, and the coefficients in (3.6) are determined to make this
reference solution fourth-order accurate. This requirement leaves one coefficient free, say S,
which is set to 0.1. Following an idea of Shampine, the local truncation error is estimated by

local error = , (3.7)

af \ ™!
I_d4h5; (yref—yn+1)

where d, is the last entry of the diagonal matrix D. The premultiplication with (1 —dh 3f/d3, )"
in (3.7) serves to obtain a bounded estimate if AA — = for problems of the form y’= Ay (see
also [13, p.134]). We remark that the LU factorization of I —d,h 3f/3y does not require
additional computation, since this factorization is available from the iteration process (cf. (3.1)
and the discussion following this formula). Hence, the computation of the local error is cheap.

The resulting code is termed PSODE. In contrast to the code PDIRK, where we used a fixed
number of iterations, PSODE is equipped with a strategy to terminate the iteration (3.1a). The
stopping criterion for this iteration is related to TOL and a test on the rate of convergence is
performed in each iteration. If this test predicts that it is unlikely that convergence will be
obtained within ITER _,, (in PSODE set to 10) iterations, then the process is interrupted and
restarted with a smaller stepsize.

There is however another difference between the two codes, which is of greater impact. In
PDIRK, each iterate Y in (3.1a) is solved up to machine precision by a modified Newton
process (similar to the approach followed in conventional DIRK methods). Especially for small
j-values, this is a waste of effort, since ||Y— Y || will be relatively large at the start of the
iteration process. Moreover (and this is the essential difference between PDIRK methods and
conventional DIRKSs), Y is no longer needed once we have calculated YY* Y, because both
are approximations to the exact solution at the same points.

Therefore, each implicit relation in PSODE is ‘“solved” by just one (modified) Newton
iteration. As a result, the number of iterations in (3.1a) to solve (2.2b) will increase, but it
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turned out that the overall process is more efficient. An additional advantage of this new
approach is that we now obtain a perfect load-balancing, since all processors perform exactly
the same number of Newton iterations. Hence, a degradation of the performance as observed
for the code PDIRK is avoided.

We have implemented the code PSODE on the ALLIANT FX /4 and applied it to a number
of test problems. Again, the aim of these tests is to measure the speedup of the code on this
parallel machine and, additionally, to compare its performance with a good sequential solver.
Since for many problems LSODE is an efficient stiff solver on sequential machines, this code is
again an obvious reference method. Furthermore, we selected the recent (sequential) code
RADAUS of [13]. This choice is motivated by the observation that it solves a Radau IIA
method (viz., the three-point fifth-order one); this starting point is quite similar to that of
PSODE, although the approach to obtain the Radau-solution is completely different. Since the
DIRK-based code SIMPLE is of a different nature and also because of its inefficient behaviour
in the high-accuracy range, we decided to cancel this code as a reference method.

In comparing the parallel code PSODE with the two sequential codes, we do not take into
account effects originating from a possible “parallelization over the loops”. By this we mean
that a long loop is cut into s smaller parts which are then assigned to the s processors. In the
Introduction, this effect is termed “parallelism across the problem” and can in fact be used by
any ODE solver. Here we merely want to test intrinsic parallelism (called “parallelism across
the method’’). In order to exclude the effects of “parallelism across the problem”, LSODE and
RADAUS are run on a single processor. In fact, the amount of intrinsic parallelism offered by
LSODE and RADAUS is very modest (see also the Remark at the end of this section).

Of course, if one is interested in ‘“parallelism across the problem”, then the sequential codes
could be implemented on an s-processor machine. However, in that case a fair comparison
would require assigning 4s processors to PSODE, since in each of the four concurrent subtasks
of PSODE, the “parallelism across the problem” can equally well be exploited.

Summarizing, we may say that PSODE needs four times the number of processors given to a
sequential code, simply because it possesses a four-fold amount of intrinsic parallelism. The
large number of processors utilized by PSODE reflects the current tendency in parallel
computing, since modern architectures — and certainly those entering the market in the
coming years — have an “almost unlimited” number of processors (massive parallelism).

Another aspect which is of utmost importance for the performance of a stiff code is the
amount of linear algebra per step, which in turn strongly depends on the dimension of the
ODE. Prior to the specification of our test problem, we will briefly discuss the characteristics of
the various codes with respect to this aspect.

A common feature of the three codes is that they need from time to time an LU
decomposition of the matrix involved in their respective iteration processes to solve the
nonlinear relations. Since the factorization of a general N-dimensional matrix requires approxi-
mately %N 3 arithmetic operations, this will dominate the total costs of the integration for
large-scale problems. Here we may think of complicated problems from circuit analysis or
semi-discretized (higher-dimensional) partial differential equations. In such applications, sys-
tems of ODEs with several thousands of equations are quite usual. In this connection we
remark that both LSODE and PSODE deal with matrices of dimension N. Hence, it is to be
expected that their mutual comparison is only marginally influenced if N increases and all
other aspects are left unchanged.
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Matters are different for the code RADAUS, since it has to deal with matrices of dimension
3N. By exploiting the special structures in these matrices, Hairer and Wanner [13] are able to
reduce the total work of the LU decomposition to % N> operations, thus gaining a factor 5
compared with a direct treatment, which would have required 2(3N)3 operations. However,
this number £ N3 compares unfavourably with the number 2N (associated with LSODE and
PSODE), and causes a serious drawback for RADAUS when applied to large-scale problems.

To get some insight in the performance of the codes, we have applied them to a small test
problem originating from circuit analysis. It was first described in [15] and extensively discussed
in [10], [12, p.112]). This (stiff) system describes a ring modulator, which mixes a low-frequency
and a high-frequency signal. The modulated signal is then used as input for an amplifier. The
resulting system of fifteen ODEs is defined by

’ —_ yl
yl =C 1[y8_0.5 y10+0.5 yll +y14_' _],

R
7 -1 y2
y2=C7|yg=05y;,+05 y;3+y;5— R
y3=C: vy —8(z)) +8(24)], ya=C ' [-yn +8(z,) —8(z3)],
yi=C Yy, +e(z) —g(z), ve=C ' [~y —8(z,) +2(z,)],
’ oy , . (3.8a)
y7=0C, "Ef+g(zl)+g(22)—g(z3)—g(z4) ) yg=—Ly ys
yo=—L;'y,, Yo=Lg'[0.5 y; —y;—17.3 yyo],
yiu=L7' =05y, +y,—173 v}, yo=L;'05y,—ys—17.3 y,],
Yis=LJ =05y, +ys =173 y],  yia=L7' -y +e(r) —86.3 yy],
y{5=Lt'1[—y2 —636.3 y;5],
where
z;=y3— Vs — Y7~ €y(f), 2,1= =Y, + Ve — Y7~ ey(1), (3.8b)
zZ, :=y4+y5+y7+62(t), Z4i= —Y3”y6+Y7+ez(t)’
and the function g, which models the characteristics of the diodes, is defined by
g(z)=40.67286402 - 10°[exp(17.7493332-z) — 1]. (3-8¢)
The signals e, and e, are defined by
e(t)=0.5sin(2-10%wz),  e,(t) =2sin(2- 10*r1). (3.8d)

The technical parameters have been given the values C=16-10"° R = 25000, C, = 1078,
R;=50, L, =445, L,=0.0005 and L, =0.002, resulting in a heavily oscillating solution. Not
yet fixed is the value of the capacity C,. In our test, we give it the value 10~°, which seems
technically meaningful. It is reported [12] that small C -values cause serious difficulties. In the
limit, i.e., on setting C,=0, we end up with a differential-algebraic system. The integration
interval in our test is [0, 107>]; the initial values are given by y,(0) =0, i =1, ..., 15. For several
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Table 3.4
Performance of the codes RADAUS, LSODE and PSODE for the circuit problem (3.8)
Method TOL Nsteps m Ay T, T,
RADAUS 10-2 1275 9.0 1.1 33.1
1073 2277 7.6 26 48.6
10* 3922 6.7 38 72.4
103 6761 6.1 49 110.9
LSODE 1073 7054 1.5 14 33.6
1074 9772 1.4 2.8 44.1
1073 13 266 1.4 29 577
106 17 887 1.3 38 747
1077 23310 1.3 45 93.1
108 30253 1.2 49 114.3
PSODE 1072 1185 7.3 14 80.0 21.4
1073 1561 7.3 3.1 104.5 278
10-* 2272 7.1 4.1 146.4 39.6
10-3 3437 6.9 52 212.1 57.7

values of the local error bound TOL the results obtained by the codes RADAUS, LSODE and
PSODE are collected in Table 3.4. Again, 7, and 7, denote the CPU-time (in seconds) when
the program is run on one and four processors, respectively. Recall that we restrict the timings
for the sequential codes to T,. The accuracy is measured by means of 4, which is defined by
writing the maximum norm of the global (relative) error in the endpoint in the form 10~ 4w,
Furthermore, Nsteps denotes the number of (successful) integration steps and 7 stands for the
average number of (effective) f-evaluations per step.

These results give rise to the following conclusions.

(i) We see that the speedup factor for PSODE (obviously defined by T,/T,) is approxi-
mately 3.7, which is pretty close to the “ideal” factor 4 on this machine. This factor rapidly
converges to 4 if the dimension of the problem increases.

(i1) Furthermore, we observe a remarkable similarity between RADAUS and PSODE: both
codes need approximately seven f-evaluations per step; moreover, to produce the same
accuracy, the required number of steps is of the same order of magnitude (for the more
stringent values of TOL, the difference in the number of steps increases, which is probably due
to the higher order of PSODE). There is however a striking difference between the two
Radau-based codes and LSODE; this code is very cheap per step, but needs much more
integration steps to produce the same accuracy. For example, to obtain a relative accuracy of
about five digits, PSODE needs = 3400 steps, RADAUS twice as many, whereas for LSODE
this number is nine times as large. Taking into account the computational effort per step of the
various codes, the comparison with PSODE vyields a double amount of time both for LSODE
and RADAUS. Approximately the same ratios are observed in the low-accuracy range (say,
Arel =3 ) ‘

As mentioned before, this example is only a model problem describing a small (part of an)
electrical circuit, and is still far away from a real-life application. However, even for this small
system of ODEs, the performance of (this provisional version of) PSODE is already superior by
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a factor 2 to that of the (well-established) codes LSODE and RADAUS. Summarizing, we can
say the following.
-The PSODE-approach is much more promising to serve as the basis for an efficient,
“all-purpose” stiff solver than the LSODE-approach. This is due to the improved mathematical
qualities, viz., the high order in combination with A-stability.
-In comparison with RADAUS, PSODE has the advantage that in large-scale problems, the
(dominating) LU factorizations require a factor 5 less computational effort. In this connection
we remark that a few preliminary experiments with a problem of dimension 75 reveal that the
overall gain of PSODE is already more than a factor 4.

For really large-scale problems we expect that the speedup factor will be in the range 6-8,
depending on the required accuracy. This number is composed of the asymptotic factor 5

coming from the algebra part and the remaining factor 1.2-1.6 originating from the higher
order of PSODE.

Remark. It should be mentioned that RADAUS offers a possibility to exploit a small amount of
intrinsic parallelism. In using two processors, the total number of arithmetic operations to
perform the LU decomposition can be reduced from N3 to $N3. We refrained from adapting
the code RADAUS in order to exploit this feature.

4. Concluding remarks

In this paper we proposed an iterative approach to solve the stage vector equations occurring
in a fully implicit Runge—-Kutta method. By a suitable choice of the iteration parameters, the
resulting scheme can be cast into the class of A-stable Diagonally Implicit Runge-Kutta
(DIRK) methods. However, the new schemes can be given a much higher order than the
classical DIRKSs available in the literature. The iterated methods have the special feature that
many of the implicit relations can be solved in parallel, which offers a great computational
advantage. Moreover, because of the “DIRK-nature” of the new schemes, they require only
one LU factorization (of a matrix with the ODE dimension) per step (per processor).

In this paper we discussed two different iteration stategies and, for both strategies, optimal
iteration parameters are derived. For both approaches, a variable stepsize code has been
implemented on an ALLIANT FX/4 computer. On the basis of two test problems, the
speedup factors have been measured; these factors, which depend on the dimension of the
ODE, vary between 2.5 and 3.7, which is pretty close to the “ideal’” factor 4 on this machine.

Furthermore, the performance of the codes is compared with that of the best sequential stiff
ODE codes: SIMPLE, LSODE and RADAUS. For a relatively simple ODE of small dimen-
sion, the parallel code is slightly more efficient than LSODE and much more efficient than
SIMPLE. For a more difficult problem of a larger dimension (viz., fifteen ODEs), the parallel
code needs considerably less time than the sequential codes.

Finally, it should be remarked that the parallel codes are still in a research phase and need a
further tuning of their parameters on the basis of extensive testing. Furthermore, we plan to
extend the codes with the facility to treat ODEs of the form My'(t) = f(y(¢)), where M is a
matrix which may be singular, resulting in a differential-algebraic system.
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